
Aalborg University
Department of Computer Science

Title:

A Study of Web Application Vulnerabil-

ities and Vulnerability Detection Tools

Topic:

Security in Web Applications

Project Period:

September 1st - January 5th, 2012

Project Group: sw901e11

Torben Jensen

Heine Pedersen

Supervisors:

René Rydhof Hansen

Mads Christian Olesen

Number of appendices: 2

Total number of pages: 37

Number of pages in report: 30

Number of reports printed: 5

Abstract:
This report presents an analysis of: Com-

mon web application vulnerabilities, a num-

ber of techniques to detect vulnerabilities,

and tools based on those techniques.

The vulnerabilities are analyzed with regards

to their nature, what damage they can cause,

and how they can be prevented in web ap-

plications. The technique analysis discusses

different approaches that can be taken in or-

der to detect vulnerabilities in web appli-

cations. Finally 13 tools have been tested

and compared against three real web appli-

cations and a test application, and the four

tools that gave the best results have been

tested further to identify their properties.

The result of the analysis is a proposal of a

tool that addresses the shortcomings of the

analyzed tools. The tool is targeted web ap-

plication developers to be used during and

after development to test the application for

common vulnerabilities.

The content of this report is freely available, but publication is only permitted with explicit permission from the authors.

Preface
This report substantiates the result of Software Engineering group sw901e11’s 9th semester

project at the Department of Computer Science, Aalborg University. The report is documen-

tation for the project made in the period from 1st of September until 5th of January 2012.

The topic of this semester project is “Security in Web Applications” and the goal is to ana-

lyze existing vulnerability tools and determine their limitations. The analysis is the basis for a

proposal to solve these limitations.

The reader is expected to have understanding of programming corresponding to a student that

has completed the 8th semester of Software Engineering.

Unless otherwise noted, this report uses the following conventions:

ß Cites and references to sources will be denoted by square brackets containing the initials

of the authors surname, and the year of publishing. The references each corresponds to

an entry in the bibliography on page 31.

ß Abbreviations will be represented in their extended form the first time they appear.

ß When a person is mentioned as he in the report, it refers to he/she.

Throughout the report, the following typographical conventions will be used:

ß References to classes, variables and functions in code listings are made in monospace
font.

ß Omitted unrelated code is shown as “. . . ” in the code examples.

ß Lines broken down in two are denoted by a ↵.

The code examples in the report are not expected to compile out of context.

Appendices are located at the end of the report.

III

Contents
1 Introduction 1

2 Prerequisites 3

2.1 Testing Techniques . 4

2.1.1 White Box Testing . 4

2.1.2 Black Box Testing . 5

2.1.3 Gray Box Testing . 5

2.1.4 Dynamic Testing . 5

2.1.5 Static Testing . 5

2.1.6 Environment Testing . 6

2.2 Vulnerabilities . 6

2.2.1 SQL Injection . 7

2.2.2 Cross Site Scripting . 9

2.2.3 Cross Site Request Forgery . 10

2.2.4 HTTP Header Injection . 11

2.2.5 Code Execution Attacks . 12

3 Findings 15

3.1 Test Environment . 15

3.2 Tested Tools . 16

3.2.1 PHP Taint . 16

3.2.2 Yasca . 17

3.2.3 Metasploit Pro . 18

3.2.4 PHP-Sat . 18

3.2.5 PHPIDS . 19

3.2.6 Wapiti . 19

3.2.7 RIPS . 20

3.2.8 CodeSecure . 20

3.2.9 Secubat . 21

3.2.10 Pixy . 21

3.2.11 N-Stalker . 21

3.2.12 Acunetix . 22

3.2.13 Skipfish . 22

3.3 Joined Results . 22

3.3.1 Moodle and WordPress . 23

3.3.2 Test Case Script . 24

3.4 Properties of PHP Taint and Wapiti . 25

3.5 Properties of CodeSecure and RIPS . 27

V

CONTENTS

3.6 General Properties of all tested Tools . 28

4 Conclusion 29

4.1 Future Work . 29

Bibliography 31

Appendices 31

A Source Code of TestApp 33

B Test Case Script 35

VI

1 Introduction
People today are using their computer a lot differently than just five years ago. More and more

applications are moving online as web applications replace desktop applications. This has

some clear advantages, for both the developers and the users, as distribution of an application

and the availability of it depend only on the computer in use being connected to the Internet.

The users’ data can also be stored on servers connected to the Internet and hence the data

will be available anywhere. Additionally the developer, and the supporter, is always aware of

which version the user is using and hence support will be easier.

But these advantages do not come without drawbacks. If the host is offline or the user does

not have access to the Internet then the service is unavailable and the user will not be able

to access his data. The user also has to trust that the web application protects his data with

regards to both availability, that his data will not disappear, and confidentiality, that his data is

only available to those he specifies.

Especially the last part, protecting the users’ data with regard to integrity, is getting more at-

tention because the data is valuable to malicious people. The information does not have to

be credit card details, as information about your habits and email addresses has high value as

well.

To prevent malicious access to the data, the system on which the web application is executed

has to be secure, but the application itself also has to be secure. The security of the application

is in the hands of the developer and hence he has to be aware of all the pitfalls and how to avoid

them. This can be a difficult task, even in small applications, and to ease the task security

testing tools have been created which can check the application for security flaws.

This project studies the testing of security in web applications by discussing techniques that

can be used by the tools and some of the vulnerabilities that web applications might suffer

from. Additionally a selection of these tools have been tested against three applications, with

known security problems and one test application which exposes the flaws in the simplest

way, to identify shortcomings of the tools and finally a proposal of a new tool which deals with

these shortcomings is made.

The next chapter will discuss some of the terms that the reader is expected to know when

reading the rest of this report.

1

2 Prerequisites
To understand the terms used in this report this chapter introduces how the problem domain

is specified by us. Additionally the common techniques used for testing are discussed with

regard to security testing, and finally the most common web application vulnerabilities are

outlined.

A web application is an application that runs on a web server and changes output dependent

on the input provided by a client. A client is usually a web browser, but could also be other

types of applications. If a web application is vulnerable it means that it during normal opera-

tion will not malfunction but when receiving specific input will crash, expose private data, or

take other unintended actions.

A vulnerability describes a class of the same problems. One of such classes is SQL injections

which allow the attacker to change the flow of the SQL queries in the application. Common

types of vulnerabilities, including SQL injections and cross site scripting, is described in Sec-

tion 2.2 along with other vulnerabilities. Common to the vulnerabilities are that they are pre-

ventable.

A problem, which is not classified as a vulnerability by us, that a web application might suf-

fer from is session hijacking. When a user authenticates with an application the application

usually uses a cookie to identify the user, but as cookies often are readable by any user of the

computer and rarely are deleted, a unique session id is used instead of the actual credentials

which instead is stored on the server along with the session id. A session hijacking attack is

when this session id is intercepted by an attacker which then is authenticated to the website

as the victim and has access to all his data. This type of problem is not due to improper sani-

tization and is difficult to prevent completely and hence it can be used as part of an attack.

If an application is vulnerable the cause is most likely in the source code. The developer has

to handle user input with care such that it will not be able to change the flow of the applica-

tion unexpected and open a potential vulnerability. The areas in the code where user input is

received is called the sources and the points where the input is able to effect the application is

called the sinks.

To avoid the input from doing any damage it has to be sanitized properly. Sanitizing input

means to ensure that it does not contain content that can break or change the application’s

flow in an unexpected manner. It is not trivial to ensure that the input is no longer malicious

as different types of attacks exist. With regard to web applications sanitizing the input for SQL

injections does not prevent the attacker performing a cross site scripting attack, both attacks

are described in Section 2.2.

3

CHAPTER 2. PREREQUISITES

Because it is difficult to ensure that all input is properly sanitized a technique called tainting

can be used. Tainting works by keeping track of which variables contain user input, called

tainted data, and propagates this tracking during execution. When a sink tries to use tainted

data it is possible to take action, i.e. end the execution with an error message preventing a

successful attack. To remove the taint tracking the programmer either has to use methods that

handle the tainted data or specifically remove the taint tracking. There exist different levels

of taint tracking because, as stated earlier, sanitizing for one attack does not protect against

others, and these implementations track if the data is tainted for SQL injection or cross site

scripting.

When a user accesses a website it is through an entry point. Entry points are dictated by the

developer and specify where to start execution of the application. However, due to the struc-

ture of some languages and frameworks it might be possible to use unintended entry points

which might change the behavior of the application and possibly create a vulnerability even

though that the application is secure if the intended entry points is used.

To help the developers protect the application against these vulnerabilities, tools have been

made to help find the vulnerable parts. These tools we call security testing tools and some of

these tools will be described in Section 3.2. The purpose of the tools are to identify vulnerable

parts of the application under test, but this is not trivial as the tools can only check for known

vulnerabilities or patterns that might expose risks. Therefore the tool could potentially not

find all vulnerabilities, a so called false negative, and give the user a false sense of security.

Additionally the tool might not be able to identify that the input has been properly sanitized

before use and report a vulnerability which does not exist; a false positive. Of course the tools

are only considered a help, and any prevented vulnerability is better than none, but they might

be considered useless if they report to many false positives and false negatives.

2.1 Testing Techniques
Testing applications with regard to security might be forgotten because the functionality is

more important, so the tests performed on the application are often targeted towards the func-

tionality. Another factor is that development is rushed by inexperienced management in order

to be the first providing a specific service.

Normally when doing tests of a piece of software there are two aspects that influence the struc-

ture of the tests. The first is how much information about the internals of the application is

available. White box testing means that the source code is available, black box testing where

no information is available at all and finally gray box testing where some knowledge about the

internals is available, i.e. which algorithms are used. The second aspect is if the application is

executed during the tests; dynamic testing, or not; static testing.

The following sections describe what the two aspects mean to vulnerability testing and how

the tests work.

2.1.1 White Box Testing
Having access to the source code enables the tester to create tests that are targeted to the appli-

cation. It is possible to see how data flows through the application and how input can change

4

2.1. TESTING TECHNIQUES

the control flow to reach other parts of the application. Additionally there exist databases con-

taining descriptions of known vulnerabilities. This information enables the tester to check if

the application contains similar vulnerabilities.

2.1.2 Black Box Testing
With no information about the internals of the application from the source code, collecting as

much information about the application is acquired at other places; the manual, expected in-

put and output, the system the application is executed on, etc. which might help create input

that exposes the vulnerabilities. One such piece of information could be in what language the

application is written, as the language can have specific vulnerabilities to test for.

Another strategy is to test the environment around the application. The saying: “A chain is not

stronger than the weakest link” fits very well as even the best programmers cannot protect the

application against privileged users giving away the information to strangers.

A common strategy is to bombard the application with random generated input, a technique

called fuzzing, which has shown to be a very effective way of finding vulnerabilities [4].

2.1.3 Gray Box Testing
Gray box testing is similar to black box testing, but some information about the internals are

available like the data structures or which algorithms are used, and thus the tester is not re-

quired to have full access to the source code of the application. This enables the tester to make

more specific tests which might not been thought of if it was pure black box testing.

Gray box testing may in some cases include reverse engineering to determine value bound-

aries or error messages, and if such information becomes available the tester could end up

making better choices while doing the tests.

Common to all testing methods are the more information available might make it easier to

find the vulnerabilities, but does not imply that they are all found.

2.1.4 Dynamic Testing
Testing an application by executing it allows the tester to see what the application actually

does on certain input. Other factors from e.g. threaded or timed execution in the application

could reveal vulnerabilities not easily found just by reading the source code as this could be

very complicated.

Additionally dynamic testing allows finding platform/environment specific vulnerabilities like

missing character encoding or numeric representation handling.

2.1.5 Static Testing
Static testing of an application is very dependent on the information level. White box level

means that it is possible for either the developer or an expert to walk through the code and

find vulnerabilities. Tools have been made, e.g. RIPS, CodeSecure, and Yasca, to automate or

help this walkthrough of various languages which will generate a list of possible vulnerabilities

based on predefined rules.

5

CHAPTER 2. PREREQUISITES

2.1.6 Environment Testing
No information about the internals of the system and not being able to execute it changes the

way of testing the application. This means e.g. that the procedures of how users are getting

their credentials the first time, and the accessibility to the server hardware should be tested.

The result of environment testing is not directly code related but rather the specification of the

system.

2.2 Vulnerabilities
Indiscriminate trust in the input data from the users is the origin of vulnerabilities in web ap-

plications. Developers of web applications have to be aware of how user input might interfere

with the control flow or output of the application. Not doing so enables malicious users to

exploit the vulnerability on the page to attack its users.

The focus of this project is to protect the data with regard to confidentiality so attacks such

as Denial of Service attacks which only limit the access temporarily will not be considered

further.

The following list discloses some of the most common attacks that can be performed and each

item will then be described in further details [6].

ß SQL injection

ß Cross site scripting

ß Cross site request forgery

ß Header injection

ß Code execution attacks

There exists many tools, languages and frameworks for developing web applications, but in

this project the focus is on the programming language PHP. This is chosen as PHP is one of the

most used programming languages for writing web applications [11, 3] and that we have great

experience developing web applications using PHP.

PHP does not, like some languages, provide automatic protection against vulnerabilities and

hence, the developer is responsible for checking and sanitizing all input from the user in order

to avoid them. Languages like Ruby and ASP.NET with MVC3 has built-in mechanisms that can

be used to protect against various vulnerabilities. This gives the advantage that the developer

does not have to worry about those specific vulnerabilities, but it may also give problems if

the configuration on the production system differs from the testing system in such a way that

these mechanisms are disabled. Common to most languages is that there exist frameworks

which helps avoid vulnerabilities like SQL injections by changing the way the data is accessed.

Furthermore PHP is a dynamically typed language, so there is no guarantee that variables re-

tain the same type. The attacker could submit strings instead of integers which could result

in a SQL injection. Some developers might not be aware of the consequence of dynamically

typed languages.

6

2.2. VULNERABILITIES

Nearly all web applications utilize a database for storing its data, and we have chosen to use

MySQL in our test environment. MySQL is an open source database system which is widely

used along with PHP applications. However, other languages and databases provide similar

functionality but will not be described in this report. Almost any content management sys-

tem or framework written in PHP has support for MySQL connections, as it is fairly easy to

connect to MySQL databases from within a PHP application. Furthermore most web hosts

offers a MySQL database to the customers along with disk space for their web application.

Lastly WAMP, LAMP, and MAMP (Windows/Linux/Mac, Apache, MySQL, PHP/Perl/Python)

are a popular bundle of software packages that sets up a full working environment of PH-

P/Perl/Python and MySQL with Apache as the web server on the desired operation system.

This makes it easy for developers to start writing web applications with a simple installation

phase.

The following sections assume that PHP is used with a MySQL database when discussing ways

to prevent the attacks.

2.2.1 SQL Injection
A SQL injection is an attack on the application trying to change the statements performed on

the database. This way the user input can bypass the limitations of the statement or even

change which data that is retrieved. The PHP source code shown in Source Code 2.1 is an ex-

ample of how an authentication check could contain a SQL injection which allows the attacker

to login as any user he wants.

1 if (isset($_POST["username"])) {
2 $res = mysql_query("SELECT * FROM users WHERE ↵

username=’".$_POST["username"]."’ AND ↵

password=’".$_POST["password"]."’");
3 if (mysql_num_rows($res) > 0) {
4 ... // Successfully logged in
5 }
6 }

Source Code 2.1: Example of a SQL injection vulnerability.

This code might seem legit, but if a user inputs ’ OR ’1’=’1 as password the where clause of

the SQL statement is changed such the resulting statement would look like Source Code 2.2.

1 SELECT * FROM users WHERE username=’’ AND password=’’ OR ’1’=’1’

Source Code 2.2: Example of a SQL injection attack.

This statement will return all users one by one as ’1’=’1’ will always be true, and often the

first user will be the administrator user and the attacker will be logged in as the site adminis-

trator as implementations usually uses the first returned row in the result.

In most standard PHP applications MySQL queries does not allow multiple statements in the

same query. However, some APIs does allow this, for instance by using mysqli’s multi_-

7

CHAPTER 2. PREREQUISITES

query() method. This allows the attacker to execute notable other queries where for example

tables in the database can be completely erased.

1 $stmt = $mysqli->multi_query("SELECT * FROM users WHERE ↵

username=’".$_POST["username"]."’ AND ↵

password=’".$_POST["password"]."’");

Source Code 2.3: SQL injection where multiple queries are allowed.

Consider the $_POST["username"] variable in Source Code 2.3 contains admin’;DROP
TABLE users;--, and the $_POST["password"] variable is empty. The final SQL query is

shown in Source Code 2.4, which is a semicolon separated list of individual queries. The first

query retrieves all information about the admin user. The second query drops the users table,

that is erase all data in the table plus the structure of the table. Lastly the third query begins

with -- which comments out the rest of the query.

1 SELECT * FROM users WHERE username=’admin’;DROP TABLE users;--’ and ↵

password=’’

Source Code 2.4: Example of how to inject multiple SQL statements.

Preventing SQL injections in PHP can easily be accomplished in one of two ways. The first

way is by sanitizing all user input with the mysql_real_escape() function which escapes all

characters which are troublesome. The second way is to use parametrized statements where

the user input is inserted into the query by the database and not the developer and will be

sanitized automatically. The code example in Source Code 2.5 shows how this works.

1 if (isset($_POST["username"])) {
2 if ($stmt = $mysqli->prepare("SELECT * FROM users WHERE username=? ↵

AND password=?")) {
3 $stmt->bind_param("s", $_POST["username"]);
4 $stmt->bind_param("s", $_POST["password"]);
5 $stmt->execute();
6 if ($stmt->num_rows > 0) {
7 ... // Successfully logged in
8 }
9 }

10 }

Source Code 2.5: Example of how to prevent SQL injection attacks.

Each question mark is replaced with a parameter which is bound in line 3 and 4 to a specific

type, in this example a string, and when all parameters are bound the final query is executed.

This ensures that all user inputs are escaped properly and thus prevents the attacker from

exploiting the SQL query.

When a SQL injection is exploited the worst case scenario is dependent on the application.

Most common is if the data is of any value to the attacker the worst case is that all your data

8

2.2. VULNERABILITIES

is acquired by the attacker, but if it is of no value then the worst case is that all data is deleted.

Sometimes both would be the worst case scenario. If the system would not expose data but

still has a SQL injection vulnerability the worst case might evolve into one of the other vulner-

abilities like a cross site scripting vulnerability created by a SQL injection.

2.2.2 Cross Site Scripting
Cross Site Scripting (XSS) is an attack against the users of a web application where they un-

knowingly navigate into an infected page, which makes their data vulnerable for the attacker.

The basics of a XSS attack is that malicious JavaScript could be injected into a page which then

is executed in the user’s web browser when the user visits the page. Typically the JavaScript

either sends data, the user’s cookie for session hijacking or parts of the visited page, to a site

owned by the attacker by appending an invisible image to the page with the data in the URL,

or by changing the target of forms on the page such that when the user submits them the data

is sent to the attackers site.

An example of how vulnerable code could look like is shown in Source Code 2.6. As seen the

problem is simply that user provided data is put into the document without any way to distin-

guish it from the other parts. The input is not sanitized in any way which makes it possible to

exploit the site by injecting malicious code.

1 <body>
2 ...
3 <?php
4 echo $_GET["type"];
5 ?>
6 ...
7 </body>

Source Code 2.6: Example of a simple cross site scripting vulnerability.

A really simple attack of this flaw is to access the page with the following appended to the URL

?type=%3Cscript%3Ealert(%22vulnerable%22)%3C%2Fscript%3E which is the same as

?type=<script>alert("vulnerable")</script> with URL encoding. This quite harm-

less attack simply creates a popup saying “vulnerable” when visiting the page. A more critical

attack could be to retreive a user’s cookies for the specific site. For example if a message board

is vulnerable to XSS, a regular user, and in this case an attacker, could inject the code shown in

Source Code 2.7.

1 <script>
2 document.write("<img src=\"http://attack.com/?"+ document.cookie ↵

+"\">");
3 </script>

Source Code 2.7: Cross site scripting exploit that sends the user’s cookies to the

attacker’s website.

9

CHAPTER 2. PREREQUISITES

This JavaScript inserts an image from a website managed by the attacker. The URL for the

image includes the cookies available from the current website. The attacker could in some

cases use some of the cookies to authenticate on the page as the exploited user.

To prevent XSS attacks the user input has to be sanitized or encoded to prevent the data from

being evaluated by the user’s browser. In PHP this can be done by using the htmlentities()
function on user input which converts all dangerous characters into HTML entities which by

the browser is interpreted as a text character and not a control character. The usage of the

htmlentities() function is shown in Source Code 2.8.

1 <body>
2 ...
3 <?php
4 $type = $_GET["type"];
5 echo htmlentities($type);
6 ?>
7 ...
8 </body>

Source Code 2.8: Usage of the htmlentities() function.

If the $type variable contains <script> the output of the htmlentities() function is

<script> which the browser interprets as special HTML characters, and not as reg-

ular HTML source code, and thus the output that is visible for the user is the text <script>.

The worst case scenario for a XSS attack is difficult to specify but it can generally be divided

into two groups: The user’s session is hijacked or the user is tricked into an unwanted action.

If the session is hijacked the attacker is able to act as the victim and perform actions on his

behalf. If the user is tricked then the possibilities are practically endless; installing malware or

Trojans, showing commercials, or even doing a phishing attack.

2.2.3 Cross Site Request Forgery
In combination with XSS, Cross Site Request Forgery (CSRF) exploits the trust a website has

to a particular user, where the user unknowingly makes a request to a website that trusts the

user. For example the attacker could embed an image URL which is a malicious request to a

page that trusts the user. This is illustrated in Source Code 2.9 which could be a XSS exploit on

a message board.

1 Sample text in the message board post.
2

Source Code 2.9: Example of a simple cross site request forgery vulnerability in

combination with XSS.

The attacker embeds an image with a request to a stock selling company where it buys 100

Google stocks on behalf of the user. The image on the message board would not be visible

though, as the request is not a valid image, but the request still completes. In most cases the

10

2.2. VULNERABILITIES

user is not aware of the situation and unknowingly bought 100 stocks. The attack is possible

as the user previously logged in to the stock company’s website and did not log out. The user

then has an authentication cookie which automatically authenticates him to the website next

time he, even unknowingly, makes a request.

As seen in the example above, the whole idea is that the URL requested on another page is

trusted, so XSS vulnerabilities are not the only way to make a CSRF attack. Fake newsletters or

spam e-mails is just examples of other approaches to exploit CSRF, as e-mails could embed a

direct link to a particular page.

CSRF is not easy to detect and there is no universal solutions to prevent these attacks, however,

there are some techniques which should limit the risk. First of all a “Remember me” option

should be avoided. This reduces the possibility that the website does not accept arbitrary

requests from the user, however, long-lived sessions are still a risk. Secondly adding a unique

token to each request could limit the CRSF risk. The token should have a timeout that marks

it invalid after a certain amount of time and only be valid once.

The worst case scenario of this attack is if any high-traffic website has been compromised for

XSS. If Slashdot is vulnerable for XSS and PayPal is vulnerable for CSRF, the attacker could

transfer money to the attacker’s account without the user’s knowledge and acceptance, thus

the users has been robbed without knowing how.

2.2.4 HTTP Header Injection
HTTP header injections are classes of attacks which can result in the before mentioned XSS

and other types of session hijacking, but it can also be used to redirect a user to a malicious

page on another server without his knowledge.

The source of the problem is the same as the one for XSS, trusting user input and inserting it

directly in the headers without sanitizing it. Source Code 2.10 shows an example of vulnerable

code.

1 <?php
2 header("Set-Cookie: type=".$_GET["type"]);
3 ?>

Source Code 2.10: Example of a header injection vulnerability.

To exploit this vulnerability the attacker has to end the current header line by passing new

line characters and then he is able to inject any header line he wants i.e. a location line which

redirects the user to the site specified. If the content of the $_GET["type"] variable is tainted

with the following data: admin\r\nLocation: http://imaginarybank.com, then the fi-

nal header is changed to:

Set-Cookie: type=admin
Location: http://imaginarybank.com
which redirects the user to another page, in this example to an imaginary bank’s website. This

could be an exact clone visually of a real bank, which could trick the user to transfer money to

another account than he expects.

11

CHAPTER 2. PREREQUISITES

Just like the other attacks HTTP header injections can be prevented by sanitizing the input,

this time by using the function urlencode(). This prevents the attacker to manipulate the

header.

The worst case scenario is if the attacker makes an exact copy of the victim’s online banking

website and the attacker has full control of this fake virtual bank, to which he has been redi-

rected. The attacker could modify the source code to transfer money to his own account for

each transfer the victim conducts. It is possible for the attacker to hide behind this website

because the victim fully trusts his online banking service, and is not aware of the attacker’s

interference and thinks he has transferred money to the regular account.

2.2.5 Code Execution Attacks
A powerful attack on a web application is a code execution attack. This way the attacker is

able to inject code into the application and this way be able to send data to himself without

the users being able to detect it. There are in general three methods to perform this type of

attack in PHP:

Reflection PHP allows dynamic evaluation of code in a string using several methods, one is

the eval() language structure. If user provided data is used as an argument for these

methods the site is vulnerable as there are no restrictions on these methods.

File Upload Uploading a file to the web server can be vulnerable as all PHP files are consid-

ered executable, so if the file uploaded to a public available location and no checks are

performed the attacker might be able to upload his own script and execute it.

File Inclusion To avoid having all PHP code in one file, another language structure allows

loading files when needed. If the user data is used to determine which files are loaded

it might even be possible to include files from another domain or files from outside the

application.

Common to these methods are that they are easy to prevent as one could use the user input in

control structures that decides which code or files are executed, instead of using it directly as

executable code. However, sometimes that is not possible and a strict user authentication and

trust to the users are required.

In some web applications users are allowed to upload files, for example an avatar as a pro-

file picture. If the developers blindly trust the files the users are uploading, these files

could include PHP code. This is not necessarily a vulnerability if the code is never ex-

ecuted, but it becomes dangerous if the uploaded file is directly available. If the file

attack.php is uploaded to the website and the file is accessible by for example requesting

http://page.com/uploads/attack.php the attacker could easily run malicious code on

the host. Source Code 2.11 shows the content of attack.php where eval() is used to run

whatever PHP code the attacker requests.

If the attacker requests attack.php?code=echo "Hello"; the page writes Hello back.

In PHP there exists several functions to execute system commands, among these the

passthru() function, which executes a command and displays the raw output. If the host

12

2.2. VULNERABILITIES

1 <?php
2 eval($_GET["code"]);
3 ?>

Source Code 2.11: Content of a file which exploits a code injection attack.

runs on a UNIX like platform and the attacker wants a list of all users on the system, he simply

requests attack.php?code=passthru("cat /etc/passwd");.

Reading arbitrary files on the host is a critical vulnerability. The file inclusion attack can in

some cases do this. Consider a web application which includes other PHP files to switch con-

tent, for example a page using ?page=contact.php to show a page containing contact in-

formation. Such code is shown in Source Code 2.12 where the input parameter page is not

validated. If an attacker rewrites the URL to ?page=/etc/passwd, a list of users on a UNIX

like system is retrieved.

1 <?php
2 ...
3 if (isset($_GET["page")) {
4 include $_GET["page"];
5 }
6 ...
7 ?>

Source Code 2.12: File inclusion vulnerability.

Even if the developer limits the inclusion to only allow .php files, there might still be

a vulnerability. If line 4 is substituted with include $_GET["page"].".php", the at-

tacker can possibly request with a NULL metacharacter, which would result in this request:

?page=/etc/passwd%00. This, however, depends on the configuration of the web server. The

include statement will read characters until the NULL meta character is found, which ex-

cludes the need for .php.

Code execution attacks can in some cases grant access to a company’s or government’s in-

tranet through the requested commands. If the intranet is accessible the options for the at-

tacker are practical limitless and can in the worst case reveal sensitive documents.

13

3 Findings
Many tools exists that test PHP applications for vulnerabilities, and each of them have different

approaches for accomplishing this task. We have chosen 13 of these tools and tested their

ability to find XSS and SQL injection vulnerabilities in four web applications. The reason for

choosing XSS and SQL injection is that they are the most common exploited vulnerabilities

[6], and common to almost all the tested tools is that they have the functionality to find such

vulnerabilities.

In this chapter the tested tools, what their abilities are, and the current state of the tool, are

elaborated. The test result is presented to give an overview of how many vulnerabilities that

were found during testing, and finally the properties of the most promising are derived.

3.1 Test Environment
One of the four web applications is a small custom made application, and the rest are a com-

bination of real world applications. The web applications are:

TestApp is a simple script written by ourselves, source code is available in Appendix A. This

application contains four obvious vulnerabilities: Three variations of XSS injections and

one SQL injection. This gives a baseline of the tools’ abilities to find very simple vulnera-

bilities in non-complex applications, as we know exactly which vulnerabilities the tools

should find.

WordPress is a widely used blog system with support for third-party plugins. WordPress is

an open source application which previously have had vulnerabilities in both the core

of the system and in some of the plugins. The tools are tested against an older version,

3.2.1, of WordPress along with a plugin which contains a known SQL injection vulner-

ability. The vulnerability exists on an older version of the plugin, hence the WordPress

installation have to match the version the plugin depends on, however, there is no guar-

antee that this version does not contain any other vulnerabilities.

Moodle is an open source course management system. Many places of study use this system

to manage courses and meetings. It is a fairly comprehensive system which according

to exploit databases has a smaller amount of known vulnerabilities compared to Word-

Press, however, the version, 1.6.2, the tools are tested against contains at least one SQL

injection vulnerability. Moodle could potentially contain confidential personal informa-

tion, such as grades, and hence the system should be secure.

15

CHAPTER 3. FINDINGS

DoubtfulSystem is a web application developed by a local newly established company. It is

developed without the use of any content management system or framework. The ap-

plication is rather large and is currently under heavy development. This application is

analyzed because it is a real world example of developing without security in focus. We

know the application contains several vulnerabilities, as the source code was examined

and several security holes was found, however, we might not have found all vulnerabili-

ties in the application.

DoubtfulSystem started as a semester project at Aalborg University. The developers saw

potential in this project and decided to form a company based on the idea. The focus of

their education is to understand software developers and learning to estimate software

projects, and not the art of software development itself, hence they only have had basic

programming lessons without having any security related topics. The reason the appli-

cation’s real name is not mentioned is that the application already is in production and

hence disclosing the vulnerabilities could expose the system unnecessarily. We found

the application interesting to examine because we believe that many new companies

publish vulnerable web applications without having focus on security. In this case the

developers knew that vulnerabilities existed but not how to prevent them and decided

not to take any action at first.

3.2 Tested Tools
This section elaborates the 13 tested tools. A description of each tool specifies the applicability

and the current state. A discussion of the result of each tool is presented, which clarifies what

vulnerabilities they were able to find and what vulnerabilities they lack finding.

3.2.1 PHP Taint
PHP does not have any taint support in the mainstream version, however, a fork of the de-

velopment tree offers this functionality [12]. This fork is a preliminary implementation for

dynamically checking tainted variables, which only has a 0.5%-1.5% runtime overhead, de-

pending on CPU used. The goal for PHP Taint is to help the developers to find and eliminate

vulnerabilities before an attacker can exploit them. This tool is not a vulnerability scanning

tool but is more alike an automatic protection against the most widespread attack techniques.

Currently there is support for code execution attacks, XSS, and SQL injections. An internal

setting in PHP’s configuration file allows PHP Taint to either; give a warning and continue

executing code, or to stop execution thus preventing the vulnerability to be exploited, when

tainted data reaches a sink.

Even though taint checking might protect web applications against exploits, PHP Taint re-

quires modifications to the core of PHP. Many changes have already been made to the core,

and the developer proposed this fork to be patched into the mainstream development. The

main developers did, however, discard this proposal back in 2006 as it may lead to false sense

of security [5]. The last release of PHP Taint was in June 2008 and still got some loose ends,

however, it still got potential in the sense of helping the developer to write secure code.

16

3.2. TESTED TOOLS

Test Results
Even though the implementation is based on an old version of PHP, PHP Taint does a remark-

ably good job in tracking tainted variables. All tested sinks were denied in all test cases, how-

ever, it had some problems with PHP’s error control operator. PHP allows expressions to be

’silenced’ which mean that any error messages an expression yields is ignored. This is done by

prepending the @ sign in front of the expression, which resulted in a blank page and no log in-

formation either. Without this information, the taint warning or error message, the usefulness

of the tool is affected.

As PHP Taint is no scanning tool, the potential vulnerabilities are not found until the exploit is

performed, however, PHP Taint still denies execution of the exploit. Furthermore no false neg-

atives were found during testing but some false positives were found were custom sanitizing

was used.

3.2.2 Yasca
The development of Yasca started in 2007 by Michael Scovetta and is capable of scanning

source code written in several languages, among them PHP. Yasca is primarily written in PHP

but make use of external libraries written in other languages. It is a command line tool that

statically analyzes the source code for detecting vulnerabilities by using pattern matching. It is

easy to extend the tool by writing new regular expression patterns within the plugin directory

that resides in the root of Yasca, however, the user of the tool does not necessarily have to write

his own expressions as Yasca includes the most common ones.

Moreover, Yasca is capable of taking use of other tools, such as Pixy, by writing plugins that

executes the tool in the background and fetches the results. The most notably plugin is

called Grep which uses external files to scan for certain patterns. One example of these is

Injection.FileInclusion.grep which checks for file inclusion vulnerabilities. However,

some of the vulnerabilities are currently written for Java Server Pages (JSP) rather than PHP,

which means not all vulnerability are found in our test cases, though Yasca supports finding

XSS and SQL injections.

The last stable version was released 4th of June 2010 and the last source code change was com-

mitted 31th of December 2010. No forum posts or bug reports were submitted to the project

website since the last commit.

Test Results
Yasca found SQL injections in TestApp and in the source of DoubtfulSystem, however, vul-

nerabilities were found in neither Moodle nor WordPress. These applications might be too

complex as Yasca were not tracking any variables.

It found a small amount of false positives, where some of the reported vulnerabilities were

found in source code comments, which obviously had no effect on the execution of the web

application.

17

CHAPTER 3. FINDINGS

3.2.3 Metasploit Pro
As a part of the Metasploit Framework, this professional edition is a black box vulnerability

scanner which offers penetration testing. The framework was created by HD Moore in 2003

and he is now Chief Security Officer at Rapid7, which acquired Metasploit in 2009. This re-

sulted in two additional proprietary editions called Metasploit Express and Metasplot Pro.

Metasploit is one of the most used vulnerability exploitation tools and provides large

databases with information about newly found exploits, where users is able to download and

execute exploits on the target host [7]. Metasploit contains tools to detect system information

about the target host, to determine if the host is susceptible for certain exploits. This informa-

tion can be gathered using OS fingerprinting and port scanning tools such as the well-known

UNIX tool nmap.

The framework is an open source platform which allows developers to write their own tools or

exploits. Currently the framework includes fuzzing tools in order to discover vulnerabilities,

instead of just offering exploits to known bugs.

Metasploit Pro includes several forms of interaction, including two command line interfaces

(CLI), a web-based interface and finally a native GUI. The web-based interface simply executes

CLI commands and writes back the result to the user. This eases the usage of the framework

as the CLI can be quite comprehensive to use.

Test Results
The tested version was Metasploit Pro which was the only edition that included the web-based

interface. It found all XSS vulnerabilities in TestApp but found no SQL injections. Metasploit

Pro was not able to detect any vulnerability in the rest of the tested applications.

3.2.4 PHP-Sat
This tool is yet another tool for statically analyzing PHP source code. The development of PHP-

Sat started at Google’s Summer of Code 2006 by PhD Eric Bouwers, because a lot of students

were not aware of the security problems involved when programming PHP applications. No

development has occurred since November 2009 and never reached a stable release build,

however, the tested version was the latest committed SVN revision.

PHP-Sat reads a configuration file with a set of rules of what procedures that are tainted

sources and sensitive sinks. Initially the configuration file was only capable of detecting XSS

but support for SQL injection detection was added in order to detect these vulnerabilities.

Test Results
PHP-Sat found all XSS vulnerabilities in TestApp, and was able to successfully track variables

and detect if the input was sanitized. It also found the SQL injection vulnerability, however,

it suffered from the same problem as PHP-Taint, where the @ sign can be used to silence the

sink. Even though it found the SQL injection vulnerability, it could not detect if the input was

tainted as it reported the vulnerability after properly sanitizing the input.

In WordPress it reported no actual vulnerabilities, however, it reported many false positives.

Moodle and DoubtfulSystem failed as PHP-Sat did not support complex object-oriented code.

18

3.2. TESTED TOOLS

3.2.5 PHPIDS
PHPIDS, short for PHP Intrusion Detection System, is an open source tool written in PHP by

M. Heiderich, C. Matthies, and L. H. Strojny back in March 2007. It is mainly a security layer

for PHP applications which recognizes attacks and reacts when intrusion is detected. PHPIDS

is able to detect XSS, SQL injection, HTTP header injection, remote file execution and several

other attacking techniques. This tool needs to be initialized before any other PHP code.

There exist modules and plugins to larger content management systems and frameworks. For

example the PHPIDS module for Drupal, a popular content management system, adds the se-

curity layer to a running Drupal instance. It allows administrators on Drupal to log the attacks

and even send mails if an intrusion is detected. Furthermore PHPIDS extensions achieves the

same in WordPress and Zend Framework applications.

PHPIDS applies regular expressions to detect known intrusion patterns and because of this

some unknown patterns could attack the site without being detected. Furthermore adminis-

trators could wrongly assume that their application is secure which leads to a false sense of

security.

The developers actively maintain PHPIDS and the latest stable version was released in August

2011.

Test Results
As a small amount of PHP code should be injected in order to be protected with PHPIDS which

required a small PHP configuration change. It was not possible for us to perform exploits for

the vulnerabilities in TestApp, so all XSS and SQL injections were successfully found. The one

known vulnerability in Moodle was successfully obstructed. The WordPress plugin was in-

stalled in order to protect the web application for vulnerabilities and successfully detected

when the vulnerabilities were exploited, but it did not avoid the attack, it only logged the in-

trusion and mailed the result to the administrators. Though one of the known vulnerabilities

in DoubtfulSystem was not hindered.

3.2.6 Wapiti
Wapiti is a dynamic black box testing tool that uses partly a database of known exploits and a

fuzzer targeted PHP, ASP, and JSP for finding vulnerabilities. The latest update was in January

2010 so the database of known exploits is outdated but the vulnerabilities are still relevant.

The tool is developed as a part of the Romulus project which is a project trying to improve the

web software development and increase its quality.

The tool works by attacking the site with different requests and based on the response it de-

termines if the attack was successful. It is possible to provide an authentication cookie and

specify that the tool should not request the log out functionality.

Test Results
The tool was able to find both the SQL injection and the XSS vulnerabilities in TestApp but

when tested on WordPress it found no vulnerabilities, but returned many false positives be-

cause WordPress returns a HTTP 500 response when faced with the wrong input. The tool did

19

CHAPTER 3. FINDINGS

not find anything on Moodle and did not return any false positives either. The test of Doubt-

fulSystem returned a lot of problems which all was different versions of the same problem: A

vulnerability allowing the attacker to send emails to whomever he wants with content he spec-

ifies. Wapiti did, however, not find any of the other known vulnerabilities in DoubtfulSystem.

3.2.7 RIPS
RIPS is a static white box analysis tool for PHP, which is able to find vulnerabilities in PHP

source code. It was released during the month of PHP security in 2010 but has been developed

since regularly [10].

The tool uses the internal tokenizer of PHP and analyzes the specified source files for vul-

nerabilities by detecting if untrusted data reaches a sink. It has different settings which specify

what data is trusted and which is not, and if sanitizing should result in trusting the data. It gen-

erates results that show the vulnerable sink and the lines of code that the data flows through

as well as the conditions which has to be true in order to reach the sink. The tool has some

missing functionality with regard to PHP functionality. Object-oriented support has not been

implemented and if the application is dynamically loading code RIPS can have trouble deter-

mining which files to include.

Test Results
RIPS found all the vulnerabilities in TestApp, but did not find any in Moodle. RIPS did find one

XSS vulnerability in WordPress allowing the attacker to redirect a user to any site of his choice.

In DoubtfulSystem RIPS found many of the known bugs but not all. The shortcomings with

regard to WordPress, Moodle and DoubtfulSystem might be due to the missing functionality

of RIPS as all the applications are using those.

3.2.8 CodeSecure
CodeSecure, earlier known as WebSSARI, is a commercial tool that does static white box testing

of the application under test. The tool is able to scan the source code of the application either

by doing a checkout from a versioning system or packaged in a file and automatically scans it

when required.

CodeSecure has a public available version that allows for analyzing a maximum of 10.000 lines

of code and it is possible to request a trial version which provides a temporary full version with

unlimited lines of code. We did, however, not get an approval for a trial version, but decided to

test TestApp with the tool anyway because some scientific papers are based on the work from

WebSSARI [2, 13].

Test Results
Due to the license limitation of CodeSecure, it was only able to scan TestApp and Doubtful-

System. It found all the vulnerabilities in TestApp, but found nothing in DoubtfulSystem.

20

3.2. TESTED TOOLS

3.2.9 Secubat
Secubat is a dynamic black box testing tool to identify SQL injection and XSS vulnerabilities on

webpages. It was developed as a proof of concept in 2006 by S. Kals, E. Kirda, C. Kruegal, and

N. Jovanovic from Secure Systems lab, Technical University of Vienna but has been developed

until January 2010.

The tool works by using different plugins which are targeted specific types of vulnerabilities.

The current version does, however, consist of plugins with simple databases of vulnerabilities

which is used to exploit the forms on the website.

Test Results
The result from scanning TestApp resulted in six reports, but they were in fact the same vulner-

ability detected several times. On the other applications Secubat did not find any vulnerability

but did not report any false positives either.

3.2.10 Pixy
Pixy is a research project by N. Jovanovic, C. Kruegel, and E. Kirda, whom also made Secubat,

and is a static white box tool. The last update to Pixy was made in July 2005.

The tool detects SQL and XSS vulnerabilities in PHP source code by determining if user input

reaches a sink without sanitization. The result is the type of the problem along with the lo-

cation of the sink, if the problem is specific or unconditional and graphs showing where the

vulnerability is.

Test Results
Pixy did find all the vulnerabilities in TestApp but due to the fact that Pixy has not been up-

dated it does not support object-oriented code which made it unable to test neither of the

bigger applications.

Additionally it is worth mentioning that Pixy does have problems with character encoding of

the files and one of the tested web applications needed to be converted before Pixy eventually

had to give up on the object-oriented code.

3.2.11 N-Stalker
N-Stalker is a dynamic black box commercial tool able to detect several different vulnerabili-

ties like XSS, SQL injection, and code injection. It is also able to detect AJAX functionality in

JavaScript and test the targets of this as well. The tool is regularly updated and uses profiles,

i.e. a XSS profile and a Webserver Infrastructure profile, covering different types of security

checks. Additionally N-Stalker has functionality to record how to log into the site and hence

allow the tool to test password protected pages also.

The free version of N-Stalker only provides the Full XSS Assessment profile with relevance to

our testing and as they did not provide us with an evaluation license, SQL injections are not

found by this tool.

21

CHAPTER 3. FINDINGS

Test Results
N-Stalker found one XSS vulnerability in TestApp.

3.2.12 Acunetix
Acunetix Web Vulnerability Scanner is another commercial tool for dynamic black box testing

of a website. It is able to detect XSS, SQL injections, and other vulnerabilities along with gen-

erating regulatory compliance reports. Both a database and a fuzzer are used to identify the

vulnerabilities. The tool is regularly updated and the version used was from October 2011.

The tool does, like the other commercial tools, not provide full functionality in the free version,

as it is limited to XSS vulnerabilities, and like the others they did not provide a trial license.

Test Results
Acunetix did find the XSS vulnerabilities in TestApp, but it did not find anything in any of the

other applications.

3.2.13 Skipfish
Skipfish is a dynamic black box tool which has been developed by Michal Zalewski from

Google. It is able to detect many web related vulnerabilities including SQL injections and XSS.

The tool is continuously developed with the last release in August 2011.

The tool works by generating a site map by crawling the website and a database of common

used paths and identifies possible vulnerable parts of each page. Subsequently it attacks all

the parts in different ways and generates a report which contains all the relevant information

about the potential vulnerability, including the response of the attack.

Test Results
The results of the test were that Skipfish found both the SQL injection and the XSS vulnerabil-

ities in TestApp. The test of the other applications did not return actual vulnerabilities but just

false positives which were easily ruled out.

3.3 Joined Results
The results for all tested tools are clarified in Table 3.1, to gain an overview of the tools.

The results from the tests have been used to select the tools that generated the most useful re-

sults: PHP Taint, CodeSecure, Wapiti, and RIPS. Even though Yasca had good result in Doubt-

fulSystem it did not find any XSS vulnerabilities in any of the applications, and failed on the

TestApp as the only tool, it was left out. The results from these tools with regards to WordPress

and Moodle will be covered in the following section and the result of DoubtfulSystem in the

section after that.

22

3.3. JOINED RESULTS

TestApp WordPress Moodle DoubtfulSystem

FV VV FP FV VV FP FV VV FP FV VV FP

D PHP Taint 4 4 0 1¬ 1¬ 0¬ 1¬ 1¬ 0¬ 1¬ 1¬ 0¬

S Yasca 0 0 0 3 0 3 3 0 3 11 10 1

D Metasploit Pro 2 2 0 0 0 0 0 0 0

S PHP-Sat 6 3 3 3 0 3 10 0 10

D PHPIDS 4 4 0 1¬ 1¬ 0¬ 1¬ 1¬ 0¬ 0¬ 0¬ 0¬

D Wapiti 6 4 2 27 0 27 0 0 0 67 15 ? 0 ?

S RIPS 4 4 0 144 1 ? 14 ? 21 0 ? 3 ? 79 10 ? 5 ?

S CodeSecure 4 4 0 ® ® 0 0 0

D Secubat 1 1 0 0 0 0 0 0 0 0 0 0

S Pixy 4 4 0

D N-Stalker 1 1 0 0 0 0 0 0 0 0 0 0

D Acunetix 1 1 0 0 0 0 1 0 1 0 0 0

D Skipfish 2 2 0 0 0 0 5 0 5 0 0 0

FV = Found vulnerabilities.

VV = Verified vulnerabilties.

FP = False positives.

D = Dynamic tool.

S = Static tool.

?= Partial result of 15 entries (if available).
¬= Was not tested thorough, see the test description in Section 3.3.
= Failed to scan application.
®= Not tested due to missing license.

Table 3.1: Summary of all tested tools.

3.3.1 Moodle and WordPress
None of the tested tools, besides PHP Taint, found the vulnerabilities in either Moodle or

WordPress. The vulnerability in Moodle was in the blog module of the system, where an SQL

injection allowed exposing the password hash of an admin user [8]. In WordPress the actual

vulnerability was in the SCORM Cloud plugin and not the core of WordPress [9]. The vulnera-

bility was a SQL injection in some Ajax functionality which could be used to execute arbitrary

SQL statements on the database.

The reasons that the tools did not find the vulnerability in Moodle were two things: The dy-

namic tools were not aware that there were a tag parameter and hence they did not try to

exploit it, and the static tools had trouble handling the object-oriented code and could not

track the tainted data through to the vulnerable mysql_query() sink.

Almost the same reasons were relevant to the WordPress vulnerability however the dynamic

tools did not find the vulnerability as none parsed the JavaScript and identified the ajax.php
file as an entry point and hence they did not try to exploit it.

23

CHAPTER 3. FINDINGS

3.3.2 Test Case Script
Due to the fact that only PHP Taint was able to prevent, and not detect, all vulnerabilities in

the DoubtfulSystem’s code, which we consider fairly simple compared to both Moodle and

WordPress, a test case script was made, see Appendix B. All the tools were tested against this

script in order to identify the limitations of the tools with regards to PHP routines. This script

contained various vulnerabilities which was used as test cases, and each of these test cases are

elaborated below:

Unknown tainted variable

Since the black box tools does not know about the source code, this test is basically a

trap no black box tools are able to find. The test simply checks if a specific user variable

contains data, but there are no references to this variable on the website, thus the test is

called Unknown tainted variable. The variable is printed back to the user without being

sanitized.

Conditional sanitizing

This tests sanitizes tainted user input when several conditions are met, but if none of

these are met, the user input is not sanitized and is written back to the user with tainted

content.

Wrong escaping for XSS

Chapter 2 states that tainted user input should be proper sanitized before used. In this

test the escapeshellcmd() function is used when printing the user input instead of

the proper htmlentities() function. This test tries to trick the static white box tools

to think that the user input is properly sanitized, as the user data is not used as a shell

command.

Wrong escaping for SQL

Like the above test, this test escapes one field correctly, but another field is sanitized

using the improper htmlentities() function which paves the way for a SQL vulnera-

bility.

Silenced SQL query

Some tools detect SQL injections by identifying an error message in the response. To get

those error messages it submits input that could change the SQL statement such that

it becomes invalid. PHP’s error control operator can silence warnings and errors, so no

messages occur on unexpected behavior. This operator is used in this test.

Hidden field SQL query

Forms typically contains several input fields and some of them can be of the type

hidden, which is not a visible field on the rendered page but is yet another field that

gets posted when submitting the form. This field can change value as all other form

fields. This test contains a hidden field which is not sanitized after being posted and

thus an SQL injection is possible.

24

3.4. PROPERTIES OF PHP TAINT AND WAPITI

Tainted function returns

To test the traceability of the white box tools, this test executes a function with tainted

input data and returns the same data. The tools should recognize if the input data is

sanitized when evaluating the returned result.

Unreachable code

This test is made to trick the static white box tools. Unreachable code cannot be exe-

cuted by dynamic tools, but the static tools might mark it as a vulnerability. This is not

actually the case as this is not a vulnerability, however, small modifications in the source

code can make the code executable, thus making it a vulnerability.

Object-oriented code

As many of all the tested tools failed on object-oriented code, a test was created with

objects containing tainted user input. This test verifies if the tools are able to track the

tainted variables on object-oriented code.

Regular expression

Custom sanitization routines are difficult to evaluate. This test replaces all characters

that are not numbers and not in the alphabet with an empty string. Static tools can

have difficulties detecting if the output of the regular expression is properly sanitized,

whereas dynamic tools can evaluate the output at runtime.

Sanitizing source

This final test sanitizes all user input data for XSS before actually using them. All $_GET
variables are assigned a new sanitized value, which is done in order to trick the static

white box tools, as they might not detect that all these variables have been properly

sanitized before use.

The reports from these tools have been analyzed to determine the shortcomings of the tool

and the technique it is using. These shortcomings along with the common shortcomings of

the tools will be discussed in the rest of this chapter. Table 3.2 shows the summary of what

vulnerabilities the tools found.

3.4 Properties of PHP Taint and Wapiti
Two of the tools that generated the best results were PHP Taint and Wapiti which both are

dynamic tools. However, PHP Taint is white box and Wapiti is black box and as it turned out

they have different properties.

PHP Taint is able to detect the specific sink that is vulnerable and specify the line of the source

code and what type of vulnerability that was found, but this requires that the taint detection

works correctly. This means that all the sources and sinks have to be known by the tool, but

also that the propagation through the code is correct otherwise false positives or negatives will

be generated. PHP Taint fails in the test case script on the regular expression test and identifies

it as a vulnerability because it cannot determine if the regular expression properly sanitizes the

value, however, PHP Taint provides a untaint() function that removes the taint tracking and

hence will not report any vulnerabilities.

25

CHAPTER 3. FINDINGS

Unknown
ta

in
te

d
varia

ble

Conditi
onal sa

niti
zin

g

W
ro

ng esc
apin

g fo
r XSS

W
ro

ng esc
apin

g fo
r SQL

Sile
nced

SQL
query

Hid
den

field
SQL

query

Tain
te

d
fu

nctio
n

re
tu

rn
s

Unre
achable

code

Obje
ct-o

rie
nte

d
code

Regula
r exp

re
ss

io
n

Saniti
zin

g so
urc

e

D PHP Taint 3 3 3 3 3 3 3 3

D Wapiti 3 3 3 3 3 3 3 3

S CodeSecure 3 3 3 3 3 3 3 3

S RIPS 3 3 3 3 3 3 3 3

D = Dynamic tool.

S = Static tool.

Table 3.2: Summary of what vulnerability test cases the tools successfully passed.

Additionally PHP Taint does not trigger the application itself, the application has to be re-

quested by the developer or any other user with access to the part under test. This makes it

difficult to test all parts of an application.

Wapiti, on the other hand, is able to crawl the website and detect sources and vulnerabilities.

This approach will automatically perform a test of all the pages of the application but it might

not cover the whole application, as all functionality has to be exposed on the website. There is

also the possibility that Wapiti will not detect the vulnerabilities as it has to identify the error

in the response and generate the correct input which in many cases was the problem.

Wapiti has the advantage that it is language independent, which allows the same tool to be

used on all web applications as vulnerabilities like XSS are not language dependent.

Wapiti and the other tools that used a dynamic black box technique does not or poorly support

custom authentication. That is authentication based on sessions within the application. They

rely on the user providing a cookie that is already logged in, and that all URLs that would log

out the user is excluded.

Another problem with the crawling approaches is that they might end up in an endless crawl.

This is due to some pages like a calendar where the links change into unique links every time.

Some tools allows for defining the depth the crawler should crawl and other allows for exclud-

ing specific URLs, however both have its limitations and may result in overlooking vulnerabil-

ities.

Common to both tools is that they require at least one request per code path to determine

if there is a vulnerability, and Wapiti might need several in order to generate the right input.

This requires that the code needs to be executed several times and will make the test more

time-consuming.

26

3.5. PROPERTIES OF CODESECURE AND RIPS

The following list is a summary of the properties of the dynamic tools we have tested.

ß They can test a website as seen by the users.

ß They can be language independent.

ß They can return many false negatives.

ß They can be slow.

ß The black box tools have the following in common:

ß They do not use module files as entry points unless they are instructed manually.

ß They will not find all functionality if it is not present directly on the website.

ß They handle pages with custom authentication bad.

ß They might crawl endlessly on calendars and similar pages.

ß The white box tools does not:

ß Examine the website itself.

ß Generate a report for all pages at once.

3.5 Properties of CodeSecure and RIPS
Two of the further tested static tools were CodeSecure and RIPS which uses the same approach,

namely analyzing the source code statically, and both of them passes and fails the same test

cases. They were able to find hidden functionality on the web application which was not san-

itized at any point. Furthermore they found the vulnerability where malicious code could

be injected in hidden input fields. The Unreachable code test was marked as a vulnerability,

which is not an actual vulnerability, but developers using these tools will be aware of improper

sanitization no matter if the code is executable or not.

When the source code was statically analyzed some false positives occurred. One example of

this is custom sanitization where the tools failed detecting that a string is successfully san-

itized using regular expressions, however, regular expressions should be used with care and

thoroughly tested before use. Detecting proper custom sanitization is hard to accomplish,

however, work has been presented to verify the sanitization by using an automata-based ap-

proach [14, 1].

One pitfall was when the source of the vulnerability was replaced with a sanitized value with

regard to XSS. The Sanitizing source test is shown in Source Code 3.1.

1 foreach ($_GET as $k => $v) {
2 $_GET[$k] = htmlentities($v);
3 }
4 echo $_GET["value"];

Source Code 3.1: Sanitization where the source is replaced with an untainted

value with regard to XSS.

27

CHAPTER 3. FINDINGS

In the source code above all $_GET variables have been properly sanitized with regards to XSS.

The static tools failed to detect that the user input was sanitized, as the tools do not verify the

actual values of the variables because the validation is not made at runtime. Hence line 4 was

marked as a false positive vulnerability.

Because the evaluation is not performed at runtime the static tools cannot determine dynamic

content. If another file is included based on the input from the user, the static tools do not

know which file to include. The tools can, however, scan all files located in the web applica-

tion and find the vulnerabilities in each file. But there are some problems with this approach.

Firstly the tainted variables could have been sanitized before use in the current scanned file,

thus leading to false positives. Secondly the control flow can change dependent on the user

input. For instance some files might not be included when certain data is received from the

user, thus again leading to false positives.

One of the major drawbacks of these tools is the lack of certain language features. They both

failed tracking object-oriented code where a class property contained tainted user data and

written back to the user. Major PHP applications, such as Moodle and WordPress, uses objects

frequently, and the tools will not detect vulnerabilities appearing when working with objects.

The following list summarizes the properties of the two static tools:

ß They can find hidden vulnerabilities.

ß They fail to verify custom sanitized user data.

ß They cannot detect if the source is replaced with a sanitized value.

ß They are unable to track variables in dynamic scenarios.

ß They have difficulties with object-oriented code.

3.6 General Properties of all tested Tools
There are some properties that are common to most of the tools. All tools examined, besides

PHP Taint, are either dynamic black box testing or static white box testing. It seems that none

of the tools explore the possibilities of gathering information from different combinations of

techniques and utilizing the advantages from them to overcome some of the disadvantages.

Some research has, however, been done trying to combine the static and dynamic approaches

with successful results but the tool is not publicly available [1].

Also the level of configuration of the tools seems very limited with regard to information level.

That is if the user of a crawling tool knows that a URL pattern is exposing the same function-

ality, like a calendar, it is not possible to limit the requests to only visit the same functionality

once. Users of the static tools cannot be instructed to find specific patterns in the language

that exposes risks.

The lack of configuration possibilities and the amount of dynamic black box tools that tries

to exploit known vulnerabilities, and PHP Taint which is used as runtime protection, gives

the impression that the tools are created as hacking tools instead of helping preventing the

vulnerabilities. Some of the tools that are targeted prevention are commercial and as none of

them provided a trial license the quality of those has been impossible to measure.

28

4 Conclusion
Throughout this report several testing techniques, vulnerabilities, and scanning tools were ex-

amined. The testing techniques were discussed with regards to web applications in order to

understand how the security detection tools work. The white box, gray box, and black box test-

ing procedures were described where the essence was to perform tests based on the amount

of internal knowledge about the target to exploit. Dynamic and static testing described the

testing approach, where dynamic testing means that the application is executed, while under

static testing it is not.

Some of the common vulnerabilities; SQL injections, cross site scripting, cross site request

forgery, HTTP header injections, and code executions, have been described to gain an

overview. Each contains a description of how the vulnerability arises, how to exploit it, how to

protect against the attack, and finally the worst case scenario if the vulnerability is exploited.

There is no single way to protect a web application against all vulnerabilities at once, however,

if the developer codes with discipline it is possible to avoid the obvious vulnerabilities.

We tested 13 tools against four web applications: Moodle, WordPress, a simple script called

TestApp, and finally an application called DoubtfulSystem; a local newly established com-

pany’s website. All applications contained known vulnerabilities, either cross site scripting or

SQL injections. Out of the tested tools the two most promising dynamic testing tools and the

two most promising static testing tools were further examined. PHP Taint, Wapiti, CodeSecure,

and RIPS were the tools that gave the best results, and for these tools we made more advanced

test cases to enlighten their exact strengths, weaknesses, and limitations, and to find the ex-

ploit scenarios they could not prevent. This resulted in an evident set of properties for the

dynamic and static tools.

4.1 Future Work
Throughout this report we found that static and dynamic tools had each their strengths, weak-

nesses, and limitations. No tool tries to use multiple techniques or combinations of tech-

niques to overcome the limitation. As stated in Section 2.1 more information makes it easier

to test an application effectively. Therefore we propose a modular tool that allows the modules

to access all data available, that is data generated from other modules that has already been

executed, or maybe use the existing Metasploit framework if it fits. This allows us to create a

tool that is able to use a combination of static analysis and dynamic testing thus giving more

information and hence an improved scan report should be possible.

We have planned to develop an initial set of modules in order to find vulnerabilities in the

web applications we have tested against during this project. The nature of the modules can be

29

CHAPTER 4. CONCLUSION

divided roughly into three groups: Information gathering, vulnerability detection, and report

generation. This division is merely a convenience to the user when using the tool and not a

technical requirement and it is also used in the following description of our planned modules.

Vulnerability detection The vulnerability detectors are the key modules of the tool, without

one of those the tools will not be able to detect any vulnerabilities.

Taint detection Through our testing we found that PHP Taint was the tool that did the

most accurate detection of the vulnerabilities. Therefore changes will be made in

the reporting part of PHP Taint such that the information will be available to the

tool. Our other modules will be created with this type of vulnerability detection in

mind.

Information gathering This group of modules is responsible for gathering information

about the application to be used by the vulnerability detectors.

Alternative entry points The tested dynamic tools crawled through the website and

maybe used a predefined list of common files in web applications, but none tried

to use the separate files of the application as entry points. This module should try

to identify all the possible entry points of the application.

Input variables All of the vulnerabilities we have covered were due to improper sani-

tizing of user input and hence all possible sources of user input in the application

should be identified by a module and used as attack points.

Code coverage/control flow identification As PHP Taint only detects vulnerabilities in

the executed code of each request, a module should analyze the code of the web

application and detect how user input influences the control flow and identify the

possible values of the input variables such that all code is executed.

Crawler A crawler should be implemented as this should perform the requests such

that PHP Taint is able to do the vulnerability scan.

Report generation This group of modules generates the actual report of a scan. The output

format could be of any type. We have not thought of how the reports of our first module

should be, however, this is of minor concern now.

We believe that the before mentioned combination of modules will allow us to detect the vul-

nerabilities in the four applications we tested against that the other tools had problems de-

tecting. Of course more modules could, and should, be developed targeted other languages or

being language independent.

30

Bibliography
[1] BALZAROTTI, D., COVA, M., FELMETSGER, V., JOVANOVIC, N., KIRDA, E., KRUEGEL, C.,

AND VIGNA, G. Saner: Composing static and dynamic analysis to validate sanitization in

web applications, 2008.

[2] HUANG, Y.-W., YU, F., HANG, C., TSAI, C.-H., LEE, D. T., AND KUO, S.-Y. Securing Web

Application Code by Static Analysis and Runtime Protection. WWW’04 Proceedings of the

13th internal conference on World Wide Web (2004).

[3] LLC, D. Programming language popularity. http://langpop.com/, October 2011.

[4] MILLER, B. P., FREDRIKSEN, L., AND SO, B. An Empirical Study of the Reliability of UNIX

Utilities. Communications of the ACM (1990).

[5] PHP.INTERNALS MAILING LIST. Run-time taint support proposal. http://news.php.
net/php.internals/26979, December 2006.

[6] PROJECT, T. O. W. A. S. OWASP Top Ten Project. https://www.owasp.org/index.php/
Category:OWASP_Top_Ten_Project.

[7] SECTOOLS.ORG. Top 125 Network Security Tools. http://sectools.org/tag/sploits.

[8] SECURITYFOCUS.COM. Moodle Blog Module SQL Injection Vulnerability. http://www.
securityfocus.com/bid/20395.

[9] SECURITYFOCUS.COM. WordPress SCORM Cloud Plugin ’ajax.php’ SQL Injection Vulner-

ability. http://www.securityfocus.com/bid/49484.

[10] SEKTIONEINS. The month of php security. http://www.php-security.org, 2010.

[11] SOFTWARE, T. TIOBE Programming Community Index. http://www.tiobe.com/
index.php/content/paperinfo/tpci/index.html, October 2011.

[12] VENEMA, W. Taint support for PHP. https://wiki.php.net/rfc/taint, June 2008.

[13] XIE, Y., AND AIKEN, A. Static Detection of Security Vulnerabilities in Scripting Languages.

Usenix Security Symposium (2006).

[14] YU, F., BULTAN, T., AND IBARRA, O. H. Symbolic string verification: Combining string

analysis and size analysis. In in Proceedings of the 15th International Conference on Tools

and Algorithms for the Construction and Analysis of Systems (TACAS (2009), pp. 322–336.

31

http://langpop.com/
http://news.php.net/php.internals/26979
http://news.php.net/php.internals/26979
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
http://sectools.org/tag/sploits
http://www.securityfocus.com/bid/20395
http://www.securityfocus.com/bid/20395
http://www.securityfocus.com/bid/49484
http://www.php-security.org
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
https://wiki.php.net/rfc/taint

A Source Code of TestApp
1 <?php
2 ini_set("display_errors", "on");
3 error_reporting(E_ALL);
4

5 if (isset($_GET["hej"])) {
6 $a = $_GET["hej"];
7 echo htmlentities($a);
8 }
9

10 if (isset($_POST["bab"]))
11 echo $_POST["bab"];
12

13 if (isset($_POST["submit"])) {
14 $cn = mysql_connect("localhost", "root", "baconbab");
15 mysql_select_db("test");
16 $username = mysql_real_escape_string($_POST["username"]);
17 $password = $_POST["password"];
18 $q = mysql_query("SELECT * FROM users WHERE username=’". $username ↵

."’ AND password=’". $password ."’");
19 $res = mysql_fetch_assoc($q);
20 echo ($res ? "Welcome ". $_POST["username"] : "Failed.");
21 mysql_close($cn);
22 }
23 ?>
24 <title><?php echo @$_POST["bab"] ?></title>
25 <hr/>
26 A test link<hr/>
27 <form action="" method="post">
28 <input type="text" name="bab" value="Some text"/>
29 <input type="submit" value="Send a text"/>
30 </form><hr/>
31 <form action="" method="post">
32 Username: <input type="text" name="username"/>

33 Password: <input type="password" name="password"/>

34 <input type="submit" name="submit" value="Login"/>
35 </form>

33

B Test Case Script
1 <?php
2 // Setup
3 ini_set("taint_error_level", E_WARNING); // PHP Taint specific
4 ini_set("display_errors", "on");
5 error_reporting(E_ALL);
6

7 // Helpers
8 define("VAL", @$_GET["val"]);
9 function t($i, $m="GET") {

10 return ($m == "POST" ? isset($_POST["type"]) && ($_POST["type"] == ↵

$i) : isset($_GET["type"]) && ($_GET["type"] == $i));
11 }
12

13 // Hidden vulnerability test
14 if (t("hidden"))
15 echo VAL;
16

17 // Condition test
18 if (t("cond1")) {
19 $a = htmlentities(VAL);
20 echo $a;
21 } elseif (t("cond2")) {
22 echo htmlentities(VAL);
23 } else {
24 echo VAL;
25 }
26

27 // Wrong escape method test
28 if (t("escape")) {
29 $b = escapeshellcmd(VAL);
30 echo $b;
31 }
32

33 // Function test
34 function a_test($an_input) {
35 return $an_input;
36 }
37 if (t("func")) {

35

APPENDIX B. TEST CASE SCRIPT

38 echo a_test(VAL);
39 } elseif (t("func")) {
40 echo VAL; // Unreachable code test
41 }
42

43 // OOP test
44 class DummyClass {
45 private $a;
46 public function __construct() {
47 $this->a = VAL;
48 }
49 public function __toString() {
50 return $this->a;
51 }
52 }
53 if (t("oop")) {
54 $d = new DummyClass();
55 echo $d;
56 }
57

58 // Regex test
59 if (t("regex")) {
60 $c = preg_replace("#[^a-z0-9]#i", "", VAL);
61 echo $c;
62 }
63

64 // SQL injection test
65 if (t("login", "POST")) {
66 $cn = mysql_connect("localhost", "root", "baconbab");
67 mysql_select_db("test");
68 $username = mysql_real_escape_string($_POST["username"]); // OK
69 $password = htmlentities($_POST["password"]); // VERY WRONG
70 $q = mysql_query("SELECT * FROM users WHERE username=’". $username ↵

."’ AND password=’". $password ."’");
71 $res = mysql_fetch_assoc($q);
72 mysql_close($cn);
73 }
74

75 // Silenced SQL injection test
76 if (t("loginsilence", "POST")) {
77 $cn = @mysql_connect("localhost", "root", "baconbab");
78 @mysql_select_db("test");
79 $username = @mysql_real_escape_string($_POST["username"]); // OK
80 $password = htmlentities($_POST["password"]); // VERY WRONG
81 $q = @mysql_query("UPDATE users SET password=’". $password ."’ ↵

WHERE username=’". $username ."’");
82 $res = @mysql_fetch_assoc($q);
83 @mysql_close($cn);
84 }

36

85

86 // Hidden SQL injection
87 if (t("loginsilencefaked", "POST")) {
88 $cn = mysql_connect("localhost", "root", "baconbab");
89 @mysql_select_db("test");
90 $id = $_POST["raprap"]; // VERY WRONG
91 $username = mysql_real_escape_string($_POST["username"]); // OK
92 $password = mysql_real_escape_string($_POST["password"]); // OK
93 $q = mysql_query("UPDATE users SET password=’". $password ."’, ↵

username=’". $username ."’ WHERE id=’". $id ."’");
94 $res = mysql_fetch_assoc($q);
95 mysql_close($cn);
96 }
97

98 // Overwrite source
99 if (t("overwrite")) {

100 foreach ($_GET as $k => $v)
101 $_GET[$k] = htmlentities($v);
102 echo VAL;
103 }
104 ?>
105 <form action="" method="post">
106 <input type="hidden" name="type" value="login">
107 Username: <input type="text" name="username"/>

108 Password: <input type="password" name="password"/>

109 <input type="submit" name="login" value="Login"/>
110 </form><hr/>
111 <form action="" method="post">
112 <input type="hidden" name="type" value="loginsilence">
113 Username: <input type="text" name="username"/>

114 Password: <input type="password" name="password"/>

115 <input type="submit" name="login" value="Login"/>
116 </form><hr/>
117 <form action="" method="post">
118 <input type="hidden" name="type" value="loginsilencefaked">
119 <input type="hidden" name="raprap" value="1">
120 Username: <input type="text" name="username"/>

121 Password: <input type="password" name="password"/>

122 <input type="submit" name="login" value="Login"/>
123 </form><hr/>
124 Cond1

125 Cond2

126 Escape

127 Func

128 OOP

129 Regex

130 Overwrite

Source Code B.1: Test cases for the four selected tools.

37

	Introduction
	Prerequisites
	Testing Techniques
	White Box Testing
	Black Box Testing
	Gray Box Testing
	Dynamic Testing
	Static Testing
	Environment Testing

	Vulnerabilities
	SQL Injection
	Cross Site Scripting
	Cross Site Request Forgery
	HTTP Header Injection
	Code Execution Attacks

	Findings
	Test Environment
	Tested Tools
	PHP Taint
	Yasca
	Metasploit Pro
	PHP-Sat
	PHPIDS
	Wapiti
	RIPS
	CodeSecure
	Secubat
	Pixy
	N-Stalker
	Acunetix
	Skipfish

	Joined Results
	Moodle and WordPress
	Test Case Script

	Properties of PHP Taint and Wapiti
	Properties of CodeSecure and RIPS
	General Properties of all tested Tools

	Conclusion
	Future Work

	Bibliography
	Appendices
	Source Code of TestApp
	Test Case Script

